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The Laplace transform is obtained for the pair distribution function between a 
pair of ions, an ion and a macroion, and a pair of macroions in an ion~lipole 
fluid. This fluid is a simplified model of an electrolyte with a discrete model of 
solvent (hard spheres with embedded point dipoles). From these results, an 
expression for the solvation force between macroions is obtained. This result 
consists of the classical DLVO result plus a series of corrections. 
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1. I N T R O D U C T I O N  

The s tudy of the in te rac t ion  force between mac ro ions  is an i m p o r t a n t  
p rob l em in col lo ida l  chemistry.  The  theory  of Dera jagu in ,  Landau ,  Verwey, 
and  Overbeek  ( D L V O )  ~ is widely accepted  and  used in diverse appl ica-  
tions. In  the D L V O  theory,  the force between mac ro ions  (or  col lo idal  
par t ic les)  immersed  in an e lectrolyte  is the sum of  a repulsive long-range  
e lec t ros ta t ic  in terac t ion ,  descr ibed  by the P o i s s o n - B o l t z m a n n  equat ion ,  
and  an  a t t rac t ive  shor t - range  van  der  W a a l s  a t t rac t ion .  

In  recent  years, the i m p r o v e m e n t  of the D L V O  theory  has  been the 
object  of several  publ ica t ions .  This work  was s t imula ted  by  the recent 
exper iments  of  Is rae lachvi l i  and  co l l abora to r s ,  (2~ who have measured  the 
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force between macroions with great precision. They find the DLVO theory 
to be accurate at large separations, but that at a small separations (less 
than 20-30 ~) the force between the colloidal particles has an oscillatory 
character not seen in the DLVO theory. 

In the DLVO theory, the ions are treated as point charges and, more 
seriously because the number of solvent molecules is greater, the solvent 
is treated as a dielectric continuum whose presence is manifest only 
through its dielectric constant. Thus, an improvement of this DLVO theory 
requires the transition from point to nonpoint ions and, more significantly, 
to a molecular solvent. Recently, Henderson and Lozada-Cassou (3) have 
obtained new contributions to the force between colloidal particles by 
assuming the solvent to be a hard-sphere fluid whose polar character is 
manifest by a dielectric constant. This model gives an extra oscillatory 
contribution to the force between macrospheres resulting from the hard- 
core exclusion forces between the solvent molecules. This oscillatory force 
was obtained from the formulas for the correlation functions of hard-sphere 
mixtures in the Percus-Yevick approximation, given approximation, given 
by Lebowitz. (4) The resulting force between the macrospheres in this model 
electrolyte is in qualitative agreement with experiment. To obtain quanti- 
tative agreement, Henderson and Lozada-Cassou argued that there was an 
additional monotonic repulsive contribution due to dielectric saturation in 
the vicinity of the macrospheres. They obt~tined a simple approximation to 
this contribution. In a later publication, Henderson (5) obtained an approxi- 
mation to this term using qualitative arguments about the correlation 
function between the macrospheres. 

Our goal in this paper is to attempt to put the qualitative arguments 
of Henderson and Lozada on a firmer basis. The model of a colloidal 
suspension used here is similar to that of Henderson and Lozada-Cassou. 
The suspension is treated as a highly asymmetric electrolyte with a 
molecular solvent. The colloidal particles are large, charged hard spheres 
and the ions are small, charged hard spheres. The solvents can be general, 
although, for reasons that will be apparent shortly, in this paper we treat 
the solvent as a fluid of hard spheres with imbedded point dipoles. For 
simplicity, we assume that there are only a very small number of large 
spheres. The study of the interactions between colloidal particles, whose 
concentration is not small, is an interesting problem, but is deferred for 
future work. 

The advantage of this ion~tipole model is that the correlation 
functions and thermodynamic properties of this model electrolyte can be 
obtained analytically using the mean spherical approximation (MSA). The 
solution of the MSA for the ion-dipole mixture for particles of arbitrary 
diameter has been given recently. (6 10) The results are a generalization of 
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the work of Blum, (11/ who solved the MSA for a mixture of ions of 
arbitrary diameter. The purpose of this paper is to obtain an expression for 
the force between the large spheres in this model using the MSA. 

2. S O M E  G E N E R A L  C O N S I D E R A T I O N S  

We consider an M-component ion-dipole mixture consisting of 
dipolar hard spheres with density Ps, diameter ds, and dipole moment ffs, 
large spheres with density Ps, charge zce (e is the magnitude of the 
electronic charge), and diameter dc = 2R, and M - 2  species of charged 
hard spheres with density Pi, charge zie, and diameter di. For simplicity, 
we will consider M =  4 ( + , - ,  c and s) and we will take the cation and 
anion diameters to be equal (d+ = d = do). The densities are defined as 
the number of particles of that species divided by the volume. 

For this model, the pair interactions are 

u•(r) = (1) 
r >  d o 

k ~r 

where i and j = ( + , - ,  c), for an ion-ion, ion-large sphere, or large 
sphereqarge sphere pair, 

I oo, r < d~j 

ui,(r) = z ie l~  (2) ~-7~- ( t - f t , ) ,  r > d,j 

where l~s and ~ are unit vectors and i = ( + ,  - ,  c), for an ion~lipole or a 
large ion-dipole pair, and 

u~(r) = D ( i , j ) ,  r>d i j  (3) 

where i and j are both solvent molecules. In Eqs. (1)-(3) 

and 

d o. = (d, + dj)/2 (4) 

D(i, j)  = 3(1~,- ~)(Oj- ~) - ~ i  ~j (5) 

The mean spherical approximation (MSA) is obtained by combining 
the exact core condition 

hij(r) = gig(r)-  1 = - 1, r < d o. (6) 
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where gu(r)  is the radial distribution function (RDF), and the approximation 

cij(r) = -- fi#ij(r), r > d~ (7) 

where fl = 1 / k T  (k is Boltzmann's constant and T is the temperature) with 
the Ornstein-Zernike relation. In Eqs. (6) and (7), i and j = ( + ,  - ,  c, s). 

We are interested ultimately in the large ion-large ion RDF, since the 
derivative of this function gives the force between these large colloidal 
spheres. Thus, we confine our attention to the charged hard sphere-charged 
hard sphere RDFs. Following refs. 9 and 10, the Laplace transform of these 
RDFs can be written 

Go(s ) = 5f  [rg~i(r) ] = Go .Hs(s) + GEL(s) (8) 

where i a n d j =  ( + ,  - ,  c); HS G;j (s) is the Laplace transform of the RDFs for 
a mixture of hard spheres of diameters ds, do, and de. Expressions for 

ns Gij (s) have been given by Lebowitz. (4) 
The functions of Hs Gii (s) are mainly responsible for the oscillations in 

the colloidal force, although EL G 0 (s) can sometimes exhibit oscillations. The 
other correction to the DLVO theory seen in experiment (the extra 
monotonic repulsion) must come from EL G~j (s). General expressions for 
these functions are given in refs. 9 and 10 and have been repeated 
recently. (12) The expressions are implicit and quite complex, involving 1t 
parameters, and are not repeated here. 

The solution to the colloidal problem requires the consideration of 
three limits: 

1. Pc ~ 0, corresponding to the case of an ionic impurity in an ion- 
dipole fluid. 

2. Dc ~> do, corresponding to the case of macroions in an ion-dipole 
fluid. 

3. P0 ~ 0, corresponding to low ionic concentration, where 

M - - 2  

Po = ~ PkZk (2) 
k = i  

In general, only step 2 is required for a colloidal suspension. We use step 
1 because in this paper we are interested only in the interaction between a 
pair of colloidal particles. The more general problem where p,. is finite is 
also of interest, but is considerably more complex. We use step 3 because 
without it the results are implicit. Using step 3, we obtain explicit results. 
Fortunately, most experiments are done at low ionic concentration. 
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In the general case (d+ ~ d_  ), the ion dipole fluid is described by nine 
parameters.  However ,  in our  special case (d+ = d = do) only the three 
parameters  bo, b~, and 
interaction parameter ,  

b2 remain. These parameters  are related to the 

~ = 4 n f l e  2 (10)  

2 _ 4 n  
~-5-~,~ (II) 

and 
2 

~1 ~ ~0~2 

Details may  be found in re~. 7-10 and 12. 

(12) 

3. RESULTS 

We have, to order  X, 

and 

fizizj e2 e_~O ~ f l 6 d  s s s GEL(S) = do ~ ( / 3 - - 1 )  2 3 2 _ 2 G + 2 _ 2 e  st 

/3 [_So + X~ (d, + do Yo) 2 S(s) + 2b2L(s)e -~ 

Sl(S) + Lmi le s, 2x (/3- |)fi6d q 
1 

(So+ X,)[S(s)+ 2b2L(s)e .... ] d~+doYo 1 J 

4flzizce2do e-s~ ~ d o x~(/3-- 1) fl6d2 do ] 
G~L(s) = _ ~ + 

/3d,,x~ [_So+X~ 2fi3do(d~+doYo)(So+X~i J 
[ Sl(s) + Ll(s)e -~ ] 

• 
[ 1 - 2 f l 3  S(s) + 2b2L(s)e ..... J 

(13) 

(14) 

GEL(s) = 4flz2~e2do(1 + x~) 
3 2 (15) 

/3d ox~(So + X~) 

where i, j = ( + ,  - ), x = ~do, x~ = x/x/-~, 

K 2 =4nfle2po (16) 

is the Debye parameter ,  and So = sdo and ss = sd,. The functions L(s), etc., 
a re  

L ( s )  = f112Ss + f13 (17) 

S(s)=flZs~ + b2fl6s~ + ~bzs s2 _2f13b 2 (18) 

Li(s) = fl3ss + b2 (19) 
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and 

S , ( s )  2 = / / 6 S s  - -  (//3 - -  b2)ss - -  b2 (20)  

The parameters b2, #, and e, the solvent dielectric constant, are related 
byO 3) 

and 

where 

2 4 
//3//12 e =  //6 (21) 

4re 2 e - 1 / / 2  (22) 

T / / # p * =  e //a 6 

( - 1 )  m 

/ /3x2 m =  1 +b2 3 x 2----  7 (23) 

Considerable algebra is required to obtain Eqs. (13)-(15). We do not give 
this here. Full details can be found in ref. 12. 

-ELt rS  Thus, for go t I, we have three terms. The first corresponds to the 
classical result 

_ _  ( r-do  //zizje2 exp - x ~  (24) 
er do ] 

The other two terms describe the contributions of the dipole~tipole and 
ion-dipole interactions and lead to the oscillations about the asymptotic 
form (24). (14' 15) 

For  ion-colloidal distribution functions, we have two terms. The first 
also corresponds to the classical result 

( z-do/2  //zieEdo exp - x ~  , z = r - R (25) 
ex, d o J 

where E =  Zce/(do/2) 2= 4ha is the electric field at the surface of the large 
sphere and ~r is the uniform charge density on the surface of the large 
sphere. The second term describes the contribution from ion~lipole inter- 
actions and in the case of d~ = do corresponds to the result obtained by 
Henderson (16) with the change do/(X e + so) --+ s,~/(x~ + So) 2. The difference 
between these two expression (also see Blum and Henderson (17)) is of 
higher order. This change does not lead to differences in the asymptotic 
behavior of GEL(s) in the limits s --+ 0 and s --+ oe. 
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and 

and 

As s --~ 0, 

1 3 
S d s )  + L , ( s ) e  .... -* ~ s, 

S(s)  + 2b2L(s)e  ~"~ ~ fi3 s3 

1 - 2 f l 3  
Sl(S ) q- Ll(S)e -ss 

S(s)  + 2 b 2 L ( s ) e - "  
= O ( s , )  

As s ~ o o ,  

- -  X2 ~- O ( S )  

GES,(s)  + L l ( s ) e - " ]  1 

S(s)  + 2b2L(s )e  -~  f16 

(26) 

(27) 

(28) 

I 1 (~-- 1)fl6 d2 ] sG~.e(s) ~ g,~.L(di, + ) _ flzieEdo 1 + x~ 
ex~ 2 fl3d~-~ + doo yo)J (29) 

= -EL'd+ ) where Yo fi3f16. This result is the contact value of g~,. t 0 �9 
For the colloid-colloid distribution function, EL g,.c (r), we have one term 

corresponding to the classical result (s) 

fiE2dc d2 ( r -- dc~ (30) x2 exp - x ~  do ,1 

The correction term for EL go,. (r) also corresponds to the classical result, 

flE2d,.x  ( r-d,  
3g,.FL(r)-- X2 exp --x~ do J (31) 

where the dipole contribution leads only to the appearance of s. Thus, 
taking into account terms O ( p o )  leads to a modified form for the classical 
result for gyL(r). 

These results for g~L(r) and ZL go, (r) have an infinity in the case P0 = 0. 
However, we can still make progress. After some algebra, we obtain 

GiE"L(s)=flzieEd~ ~ f13 

• . . . . .  

t ds + doYo 

S , ( s ) + L , ( s )  e-ss .] 
+ x~ (So + x~)[S(s)  + 2b2L(s)e  s , ] j  (32) 

822fl2/5-6-35 
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s, - 2s, + 2 - 2e GEL,, Be2d<?_l gS d M 
<,<. ts) = - 1 ~  \ ---~,} \ --fi~-,] S ( ~ ;  2 - b 2 ~ L ~  (33) 

and for the contact values we have 

8zieE ( e -  l'] fl6d~ (34) 
G~L(d2)= 2 k~--/8~(a~+a0y0) 

EL + 8E~d<d: (L@) P6 ~ (35) 
Gi<. ( d < ) =  16 fi3 2 

Details are given in ref. 12. Using 

Sl(s) + Ll(s)e ~ 2 2 86s~[s, - 2s, + 2 -- 2e -'~] 
1 -2 f l3  S(s )+2b2L(s )e_ , s -  S(s)+2b2L(s)e_, ,  (36) 

we obtain that the first term in the expression (32), which exactly 
corresponds in the limit x ~ 0 to the second term (14). Using an analogous 
correspondence between (34) and (29), we have also obtained the contact 
value EL + gi~ (d,.). Thus, for g~.C(r) we have two terms; one corresponds to 
(25) and is proportional x ~, the second corresponds to (32) and is not 

g, .  (r), we expect that it will have dependent on x in the limit x ~ 0. As for EL 
three terms: one corresponds to (30) and is proportional to x -2, the 
second is proportional to x -  t, and the third does not depend on x in the 
limit x ~ 0. As yet  we do not know about the connection of the last term 
with (33). For  the answer to these questions, we need to analyze our 
general results, taking into account terms O(po). We will consider this 

EL~d+ problem in a second article. As for g ,  t c J, we have 

cc tb/c ) = T  .~___ql_N ~ x  ~ -~s83 

1 ( d o 2 + ( e _ l ) f l ~ d :  ) J  
4e 8~(d, + do yo) ~ (37) 

where for terms independent of x, we do not have exact correspondence 
with (35). The last term 

8e d< 1) 8 aJ ) (38) 
16~ 8~(d2-~o Yo)7, } 

characterizes this difference. 

4. CONCLUSION 

We have obtained, using the MSA, a general expression of the Laplace 
transform of the pair distribution functions between two ions, an ion and 
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macroion, and two macroions in ion~dipole liquids. This result is a special 
case of Holovko and Protsykevich, (1~ who solved the MSA for the 
ion-dipole mixture with arbitrary sizes of particles. We give explicit first 
corrections for the classical Debye-like result for this function in the limit 
of small ionic concentrations. Our result for the pair distribution function 
of an ion-macroion pair is a generalization of the result of Blum and 
Henderson, (18) where the first correction corresponds to including a Stern- 
like layer term. We have shown that including the second-order correction 
terms O(x 2) in the classical result corresponds to taking into account 
Stern-like layer terms for the hydration force between two macroions. 
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